Tecnologia&Inovação

12 • Correio Braziliense • Brasília, segunda-feira, 14 de julho de 2025

anapaula.df@dabr.com.br 3214-1195 • 3214-1172

Editora: Ana Paula Macedo

O stomp, nome do material, permite criar protótipos de órgãos e simular regiões com precisão inédita. Poderá ser utilizado em terapias regenerativas e em casos de doenças multicelulares, como as causadas por bactérias, fungos e vírus

Universidade de Washingtor Tecido humano "feito" em 3D Modelo simulando a ponta

» RAFAELA BOMFIM*

m novo instrumento desenvolvido por cientistas norte-americanos promete transformar as pesquisas em engenharia de tecidos e das terapias regenerativas. Criado por uma equipe multidisciplinar da Universidade de Washington e da Escola de Medicina afiliada, o sistema batizado de stomp (Padronização Microfluídica Aberta de Tecido Suspenso) surge como uma solução acessível e com elevado grau de adaptação, oferecendo nível de precisão até então inédito na simulação de tecidos humanos em laboratório. O estudo foi publicado na revista Advanced Science.

O stomp permite a organização seletiva de diversos tipos celulares em um mesmo suporte de hidrogel e possibilita a imitação de regiões biológicas complexas, algo fundamental para estudar distúrbios envolvendo múltiplos tecidos, como patologias neuromusculares.

A inovação se destaca por aprimorar um método conhecido como fundição de tecidos — processo que envolve a deposição de géis compostos por células e materiais sintéticos em moldes. Em vez de depender de recipientes fechados, a nova plataforma utiliza canais abertos que exploram a ação capilar para conduzir os elementos biológicos até posições definidas com exatidão. Com esse mecanismo, pesquisadores conseguem criar interfaces como as encontradas entre músculos e tendões ou entre áreas saudáveis e lesadas do miocárdio.

Segundo os idealizadores, essa versatilidade é comparável à precisão de um chef de cozinha ao organizar os ingredientes para uma sobremesa complexa. A estrutura física do stomp tem dimensões minúsculas — semelhante à extremidade de um dedo humano — e se encaixa em um sistema de dois pinos previamente criado para estudar contrações de tecidos cardíacos.

Saiba mais

Uso prático e cotidiano

Duas perguntas para

TATIANA SABANEEFF, MÉDICA DO

HOSPITAL ANCHIETA CEILÂNDIA

Pela sua experiência, quais as

vantagens na dermatologia do

protótipo em 3D?

uso de biotecidos, inclusive esse

pacta diretamente na qualidade do trata-

mento. Seja uma prótese facial, uma placa

compressiva para cicatrizes ou um molde

terapêutico, quanto mais cedo o pacien-

te recebe o dispositivo ideal, melhor será

a resposta clínica. Além disso, a fabrica-

ção limpa diminui o risco de contamina-

ção, o que é fundamental em tratamentos

Os chamados biotecidos, feitos em laboratório como alternativas sustentáveis aos tecidos tradicionais, são utilizados principalmente em pesquisas e testes, sobretudo na saúde. O material pode substituir o uso de animais em experiências e aprimorar a avaliação de medicamentos, cosméticos e produtos de higiene pessoal. Há, ainda, a aplicação

na pesquisa de doenças e no desenvolvimento de tratamentos para condições como úlceras e queimaduras.

Também podem ser utilizados para avaliar a eficácia e segurança de novas drogas, testando reações adversas e efeitos crônicos que só seriam notados em etapas avançadas de pesquisas. Há estudos que mostram a aplicação em pesquisas sobre melanoma e câncer de colo do útero. De acordo com especialistas, tecidos cultivados em laboratório são uma opção no tratamento de úlceras dermatológicas crônicas e queimaduras, substâncias in vitro. (RB)

acelerando a cicatrização e promovendo a regeneração da pele.

Pesquisas comprovam a utilização do material para criar modelos de órgãos, como o fígado, que podem ser usados em estudos de toxicidade de medicamentos. A grande vantagem é que os resultados mais próximos do que se passa em organismos vivos, o que pode levar a testes mais precisos e confiáveis. É possível ainda simular efeitos crônicos ou acumulados no longo prazo, já que é possível superdosar as

prolongados. Isso representa uma revolução no cuidado com a pele: mais ciência, mais conforto e melhores resultados. Será que esse modelo pode ser mais anatômico e até confortável, contribuindo para a adesão?

Com certeza. Essa nova resina representa um salto em direção ao futuro da dermatologia. Ela permite a produção de dispositivos com acabamento delicado, altíssima precisão e excelente tolerância pela pele. Isso se traduz em mais conforto, estética aprimorada e maior adesão do paciente, afinal ninguém quer usar algo que machuca ou incomoda. Quando o dispositivo é bonito, anatômico e confortável, o paciente usa com orgulho. Isso é essencial, especialmente em tratamentos que exigem consistência para funcionar. (RB)

Colaborativa

A pesquisa envolveu cientistas das mais distintas áreas, como Ashleigh

Theberge, professora de química; e Nate Sniadecki, engenheiro mecânico e especialista em biomecânica. Ambos são coautores de estudos voltados à

medicina regenerativa e lideraram os testes do novo equipamento.

As investigações foram conduzidas por doutorandas e pós-doutorandas, como Amanda Haack e Lauren Brown com apoio dos professores, como Cole DeForest, que contribuiu com uma inovação paralela: paredes degradáveis que facilitam a retirada do tecido formado, sem comprometer sua integridade. Já Tracy Popowics, pesquisadora de biologia bucal, participou dos testes envolvendo tecidos ligamentares que conectam dentes ao osso alveolar — um modelo útil para pesquisas odontológicas e de regeneração óssea.

Dois estudos de validação mostraram como o stomp consegue distinguir as diferenças entre amostras saudáveis e doentes. Em um deles, tecidos cardíacos com fibrose foram comparados com estruturas normais, revelando diferenças nas propriedades contráteis. Em outro experimento, foi recriado o microambiente do ligamento periodontal, indicando a aplicabilidade do dispositivo em odontologia regenerativa.

Além da capacidade de manipulação espacial, o projeto se destaca por sua função antiaderente, pois evita que células menos robustas percam a estrutura durante o cultivo, uma limitação comum em outras técnicas tridimensionais. Para Theberge, o impacto do novo sistema vai muito além dos estudos atuais. "Foi uma verdadeira colaboração interdisciplinar. Estamos apenas começando a explorar o que essa tecnologia pode oferecer à pesquisa biomédica", afirmou.

O trabalho recebeu apoio financeiro dos Institutos Nacionais de Saúde dos Estados Unidos (NIH), além de recursos de fundações voltadas ao estudo de distrofias musculares e parcerias com universidades como a de Wisconsin. Com o stomp, a engenharia de tecidos entra em uma nova fase, na qual a criação de modelos biológicos ricos em detalhes e multifuncionais se torna não apenas possível, mas também acessível a laboratórios em diferentes locais do mundo.

* Estagiária sob supervisão de Renata Giraldi

DENTRO DA MENTE

Decisões humanas interpretadas por IA

Um novo modelo de inteligência artificial, desenvolvido no instituto Helmholtz Munich, na Alemanha, promete ajudar na compreensão da mente humana. Denominado Centaur, o sistema foi treinado com mais de 10 milhões de decisões extraídas de experimentos psicológicos e consegue prever com bastante precisão como uma pessoa pode reagir diante de diferentes situações, inclusive em cenários inéditos. O avanço oferece a chance de refinar teorias sobre o comportamento humano, aperfeiçoando tratamentos psicológicos. A pesquisa detalhando o estudo foi publicada na revista *Nature*.

Com a promessa de prever comportamentos humanos e, ao mesmo tempo, lançar luz sobre como o ser humano processa os pensamentos, o Centaur marca uma nova fase no cruzamento de dados e informações entre tecnologia e mente. Um passo rumo à compreensão profunda da formação do ser humano, segundo

O sistema de IA busca romper barreiras ao unir clareza teórica com eficiência preditiva. Ele foi treinado a partir do Psych-101, um banco de dados exclusivo contendo decisões de mais de 60 mil voluntários em 160 experimentos comportamentais. Os dados foram padronizados para permitir a interpretação por um modelo de linguagem, apto a de transformar descrições em texto e em informações cognitivas.

O sistema tem a capacidade de reconhecer estratégias comuns de tomada de decisão, mesmo em contextos inéditos. O modelo também consegue prever tempos de reação, algo essencial em estudos sobre transtornos como ansiedade ou depressão. Segundo Marcel Binz, principal autor do projeto, a ferramenta funciona como um "laboratório virtual" que simula qualquer situação descrita em linguagem natural.

As aplicações são vastas. Além de aprimorar a análise de experimentos clássicos, o Centaur pode ser utilizado para simular como pessoas com diferentes condições mentais tomam decisões.

Isso abre espaço para diagnósticos mais personalizados e intervenções baseadas em perfis cognitivos reais. Os pesquisadores planejam ampliar o conjunto de dados para incluir informações demográficas e traços psicológicos, tornando

o modelo ainda mais robusto. Desenvolvido em um ambiente público de pesquisa, os cientistas firmaram compromisso com a transparência, o controle A ferramenta está sendo aprimorada para compreender como processos específicos de pensamento se desenvolvem

local dos dados e a responsabilidade ética. "Nosso foco é unir ciência de dados à psicologia, mantendo o compromisso claro com a ética", afirma Binz.

Na fase atual, a equipe se dedica a entender como os padrões aprendidos pela IA se relacionam com processos mentais específicos. A ideia é identificar como diferentes perfis cognitivos influenciam decisões e o que isso revela sobre o funcionamento da mente.

Para os cientistas, essa abordagem representa um avanço decisivo no entendimento da cognição — com impacto direto em áreas como saúde, educação e ciências sociais. Nesse estudo, diferentemente dos modelos anteriores, que se baseavam em regras predefinidas ou parâmetros restritos, o Centaur aprende estratégias comuns de tomada de decisão e as generaliza para novos contextos. Essa diferença coloca a ferramenta em destaque, sobretudo pelo elevado grau de exatidão.

