Tecnologia&Inovação

12 • Correio Braziliense • Brasília, segunda-feira, 6 de maio de 2024

Editora: Ana Paula Macedo anapaula.df@dabr.com.br 3214-1195 • 3214-1172

Tom Ellis/Marcus Walker/Imperial College Londres Couro autotingido feito de **Pesquisadores** bactérias fabricaram uma carteira com pigmento preto natural a partir da inovação totalmente vegana

Cientistas da Imperial College London modificaram geneticamente uma espécie de microrganismo para a fabricação do material, sem componentes de origem animal nem de plástico. E, mais uma vantagem: é biodegradável

» JÚLIA MANO*

m couro que se tinge sozinho, criado a partir de bactérias modificadas geneticamente, foi desenvolvido por cientistas do Imperial College London, do Reino Unido. O material não tem componentes de origem animal e nem de plásticos. A iniciativa reforça o empenho de setores da indústria têxtil que buscam alternativas para contribuir com a redução da emissão de gases de efeito estufa e poluição da água.

Os insumos para a produção de roupas e sapatos, normalmente, oriundos da produção agrícola e do processo de tingimento, podem liberar microplásticos. Nos últimos anos, intensificaramse os esforços para reduzir os impactos ambientais, por meio de biomateriais comerciais, que têm como base fontes microbianas e fúngicas. "Inventar uma maneira nova e mais rápida de produzir alternativas sustentáveis de couro autotingido é uma grande conquista para a biologia sintética e a moda sustentável", diz, em comunicado, o líder do grupo de pesquisa, Tom Ellis.

O material proveniente das bactérias geneticamente modificadas se chama celulose bacteriana. O composto pode ser biossintetizado por diversas espécies de microrganismos. Os pesquisadores classificaram o insumo obtido como uma alternativa "promissora" ao couro sustentável, cuja produção é feita por produtos químicos menos agressivos e de menor despesa de água e ener-

Em comunicado, Tom Ellis explica que a sintetização demanda uma "pequena fração das emissões de carbono e água". Além disso, o cientista destaca que o composto pode ser produzido "sem produtos petroquímicos e é biodegradável de forma segura e não é tóxico ao meio ambiente".

Em um artigo publicado na revista Nature Biotechnology, os cientistas explicaram o processo de estudo que levou à criação de dois protótipos, uma carteira e um sapato sem sola, com o couro produzido a partir da celulose bacteriana. Segundo os pesquisadores, o material alcançou a coloração "preta, escura e robusta" pela biossíntese de melanina das bactérias modificadas geneticamente por eles. O grupo constatou que as peças de demonstração mantiveram a pigmentação por cerca de três anos e meio.

A fabricação do sapato sem sola contou com a colaboração de designers. A celulose bacteriana assumiu a forma do calçado após 14 dias de crescimento. Depois, os cientistas submeteram a peça à agitação suave de 30 °C, por dois dias, para a ativar a propriedade da bactéria que produz o pigmento preto. A carteira foi confeccionada com duas "folhas" de celulose bacteriana. Depois do processo de crescimento dos compostos, o couro obtido foi cortado e costurado para assumir o formato da peça. Na próxima fase de pesquisa, os cientistas querem aprimorar a produção para produzir pigmentos coloridos.

O projeto recebeu financiamento de £2 milhões (cerca de R\$ 12,8 milhões) do Conselho de Pesquisa em Biotecnologia e Ciências Biológicas e do Conselho de Pesquisa em Engenharia e Ciências físicas, ambos da organização britânica Pesquisa e Inovação do Reino Unido.

Genes alterados

O professor Humberto Maciel França Madeira, do departamento de Biotecnologia da Pontifícia Universidade Católica do Paraná (PUC-PR), explica que uma bactéria geneticamente modificada consiste na alteração de seu DNA ácido desoxirribonucleico que carrega o material genético de seres vivos. A maneira mais comum de fazer essa alteração é pela "introdução de genes de outros organismos", mas também por "edição" nos genes existentes.

Madeira considera que o couro criado pelos cientistas britânicos necessita de "avanços" para a fabricação em larga escala e ser "economicamente viável". O professor da PUC-PR também diz que precisam ser desenvolvidos "tratamentos complementares" para que o material tenha características presentes no couro de origem animal, como "resistência mecânica e durabilidade".

A coordenadora do Laboratório de Engenharia Bioquímica e Biotecnologia da Universidade Federal do Paraná (UFPR), Michele Rigon Spier, pondera que o processo não é "simples" e "rápido". As bactérias modificadas geneticamente são utilizadas na fabricação comercial de insumos para a indústria, como bioplásticos, medicamentos, sabão, detergentes, tecidos, papel, bebidas e alimentos.

Para a professora, o desafio é a aplicação do couro produzido com bactérias modificadas em escala industrial no Brasil. Segundo ela, há no país "carência de tecnologia em maquinário", de estímulos e ainda excesso de tributos que incidem sobre esses insumos especificamente. "Até o momento não

Três perguntas para

VALESKA NAKAD, COORDENADORA DO CURSO DE DESIGN DE MODA DO CENTRO UNIVERSITÁRIO BELAS ARTES DE SÃO PAULO E CONSULTORA DE DESIGN ESTRATÉGICO PARA O MERCADO DE NEGÓCIOS DE MODA.

No Brasil, o couro é geralmente extraído pelo processo de curtimento, em que a pele de animais é tratada para se tornar o material. Os couros mais valiosos são de alta qualidade, como de bezerro, de vitelo, de crocodilo e de jacaré. São valorizados por sua textura suave, durabilidade e exclusividade. A raridade e a demanda por certos tipos também influenciam o valor no mercado. Para a fabricação de vestuário, alguns tipos de couro são preferidos devido às características específicas, como maciez, durabilidade e facilidade de manuseio. O couro mais utilizado é o bovino. O couro sintético, embora não seja verdadeiro, é amplamente utilizado por ser uma opção mais acessível e ética.

Como a indústria da moda lida com o uso de materiais de origem animal e a necessidade urgente de preservação do meio ambiente?

Demonstra crescente interesse por novos materiais têxteis, especialmente de menor impacto ambiental. A demanda por couros alternativos cresceu significativamente nos últimos anos. Esse interesse é impulsionado por vários fatores, que incluem preocupações éticas, ambientais e de sustentabilidade, além de uma crescente conscientização dos consumidores sobre os impactos da indústria da moda no planeta e nos animais. Alguns materiais diferentes utilizados pela indústria têxtil são alternativas sustentáveis, como o couro feito de cogumelos, de folhas de abacaxi

A incorporação de novos insumos desperta interesse?

À indústria têxtil é uma das mais inovadoras e tem um alto investimento em produtos alternativos. A tecnologia aplicada na área beneficia também os setores automobilístico, de movelaria e farmacêutico. Os avanços tecnológicos sempre foram a mola propulsora de inovação na indústria da moda. Podemos pensar no nylon e no elastano. Esses progressos refletem o desejo em encontrar soluções para as demandas dos consumidores.

O momento é propício para esses

movimentos em curso?

Neste momento da história, com o aumento da preocupação com o meio ambiente e animais, materiais e produtos que atendam às necessidades dos consumidores conscientes, ao mesmo tempo em que minimizam o impacto ambiental, têm a oportunidade de se expandir no mercado. É a chance de a indústria da moda ser mais sustentável e responsável.

Marcelo Soubhia/FOTOSITE

A marca Mosin produziu tecidos à base de colônias de cogumelos, em 2022

temos planta industrial para a produção e a purificação do couro produzido por bioprocesso no Brasil", analisa. Michele Spier destaca a necessidade de dar suporte às pesquisas nesse campo.

"Existem processos que podem substituir o uso de animais e de químicos impactantes ao meio ambiente e precisam ser apoiados, regulamentados e incentivados por iniciativas governamentais", diz Spier. "Precisamos de políticas públicas para incentivar e obter benefícios por meio de redução de impostos para as plantas industriais que produzirem produtos sustentáveis como esse, pois o custo de produção é elevado e é fundamental ter incentivos ou subsídios do governo tanto para o couro vegano como para os verdadeiros bioplásticos, por exemplo."

* Estagiária sob a supervisão de Renata Giraldi

Hiroshi Shiigi, Universidade Metropolitana de Osaka Dispositivo é conectado ao smartphone e mostra as informações detectadas pelo sensor

Sensor de alta sensibilidade

Pesquisadores da Universidade Metropolitana de Osaka, no Japão, criaram um sensor para detectar bactérias causadoras de intoxicação alimentar em tempo real. Conectado com smartphone, o dispositivo é pequeno, barato e fácil de operar. Os testes atuais para fazer essa inspeção necessitam ser feitos por profissionais qualificados e processos de cultura em laboratório.

"É uma ferramenta poderosa para determinar com precisão os níveis de contaminação bacteriana em fábricas de alimentos, hospitais e locais de produção farmacêutica", diz o líder do estudo, Hiroshi Shiigi. Os cientistas publicaram os resultados da primeira fase de pesquisa que durou aproximadamente dois anos, na revista Analytical Chemistry. Durante o período, os pesquisadores desenvolveram o sensor, o aplicativo para smartphone, o eletrodo de chip e testaram o dispositivo em três tipos de bactérias causadoras de intoxicação alimentar.

A equipe sintetizou nano-híbridos

metálicos orgânicos de ouro e de cobre que são condutores. O anticorpo para os três tipos de bactérias testados foi inserido nesses componentes. "Ao introduzir anticorpos nos híbridos e utilizá-los como marcadores, é possível estimar o tipo e o número de microrganismo com base no potencial e na magnitude da corrente em resposta", explica Shigi.

Para próxima etapa da pesquisa, os cientistas japoneses pretendem aumentar a quantidade de bactérias detectadas pelo dispositivo. (**JM**)